MSE问题集
说明: 这里收集MSE中的部分问题, 问题可能有详细的解答, 也可能不会写的很详细, 但绝对会附上必要的问题来源与可能的参考文献.关于页面中的文献: 部分文献是从MSE的回答或讨论中搜集到的, 部分是按照本人的理解从网络上搜集下来, 一旦我本人理解了就可能不再给出更多的文献.问题末尾可能出现的TODO字样, 是因为对应的问题中存在短时间内不能理解的结论, 或者信息量过大一时整理不出来而做的个人标记, 等待以后时机成熟便于做出补充说明.
Q4431616问题: 证明
0\le yz+zx+xy-2xyz\le\frac{7}{27},其中 $x$, $y$ 和 $z$ 是满足 $x+y+z=1$ 的非负实数.
提示
Prove. 设 $p=a+b+c=1$, $q=ab+bc+ca$, $r=abc$, 则 $p^{3}-4pq+9r\ge0$. 使用 three degree Schur
a(a-b)(a-c)+b(b-c)(b-a)+c(c-a)(c-b)\ge0来证明上述不等式. 则 $r\ge\frac{4q-1}{9}$.
命题相当于证明 $q-2r\le\frac{7}{27}$, 即 $q-2r\le q-\frac{8q-2}{9}\le\frac{7}{27}$, $q\le\frac{1}{3}$. 这可以由 $p^{2}\ge3q$ 证得.
Q4432417问题: 设 $f(n)=\sum_{\delta\mid n}d(\delta)$, 则可以证明 $f(n)$ 是一个积性函数, 且 $f(p^{k})=\sum_{i=0}^{k}(i+1)=\frac{(k+1)(k+2)}{2}$.
提示
证明: 设 $(m,n)=1$, 则
f(mn) =\sum_{\delta\mid mn}d(\delta)=\sum_{\delta_{1}\mid m,\delta_{2}\mid n,\delta=\delta_{1}\delta_{2}}d(\delta_{1}\delta_{2})=\sum_{\delta_{1}\mid m}\sum_{\delta_{2}\mid n}d(\delta_{1})d(\delta_{2})=f(m)f(n).
TODO
Q4434804问题: 证明
\sum_{n= ...
数学术语(in english)
lowest terms: 最低项, 最简项, 分数中没有公因子的分子和分母
A common fraction is in lowest terms if the numerator and denominator have no common factors other than $1$. A fraction in lowest terms may also be said to be in simplest form.
critical point: 临界点
定义: (càdlàg process)càdlàg process A càdlàg process $X$ is a stochastic process for which the paths $t\mapsto X_t$ are right-continuous with left limits everywhere, with probability one. The word càdlàg is an acronym from the French for “continu à droite, limites à gauche”.
定义: (extreme points)extreme points Let $X$ be a vector space over $\mathbb{R}$, $K$ be a convex subset of $X$. We say that $a$ is an extrem point of $K$ iff, whenever $a=tx+(1-t)y$ for $t\in (0,1)$, we have $x=y=a$.
定义: (scatter plot) a graph in which the values of two variables are plotted along two axes, the pattern of the resulting points revealing any correlation present.
定义: (Hessian Matrix)Hessian Matrix The Hessian matrix of a multivariable function $f(x,y,z,\cdots)$ organi ...
线性代数中的定义
这里放一些定义的收集, 以免以后用的时候有细节上的疏漏. 同时也会放上参考文献
欧式空间中的定义定义: 1 设 $V$ 是实数域 $R$ 上的一个线性空间. 如果有一个法则,它对于 $V$ 中任二向量 $\alpha$ 与 $\beta$, 都有唯一确定的实数, 用 $(\alpha, \beta)$ 表示, 与它们对应, 且满足
$(\alpha, \beta)=(\beta, \alpha)$,
$(k \alpha, \beta)=k(\alpha, \beta),(k \in R)$,
$\left(\alpha_{1}+\alpha_{2}, \beta\right)=\left(\alpha_{1}, \beta\right)+\left(\alpha_{2}, \beta\right)$,
当 $\alpha \neq \theta$ 时, $(\alpha, \alpha)>0$,
则称在 $V$ 中定义了一个内积, 并把 $V$ 叫做一个欧式空间. 在欧氏空间中, 常把实数 $(\alpha, \beta)$ 叫做向量 $\alpha$ 与 $\beta$ 的内积.
定义: 1 设 $\alpha, \beta$ 为两个非零向量, 称实数
\varphi=\arccos \frac{(\alpha, \beta)}{|\alpha||\beta|}为向量 $\alpha$ 与 $\beta$ 的夹角, 亦即
\cos \varphi=\frac{(\alpha, \beta)}{|\alpha||\beta|}
定义: 1 称非负实数 $\sqrt{(\alpha, \alpha)}$ 为向量 $\alpha$ 的长或模, 并用 $|\alpha|$ 表示, 即
|\alpha|=\sqrt{(\alpha, \alpha)} \text {. }
正交基与标准正交基定义: 1 如果欧氏空间中两个向量 $\alpha$ 与 $\beta$ 的内积等于零, 即
(\alpha, \beta)=0,则称 $\alpha$ 与 $\beta$ 正交.
定义: 1 设 $V$ 是 $n$ 维欧氏空间. 如果 $V$ 的基 $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}$ 中每两个向量都正交, ...
记浙江省首届高等数学竞赛非数学类最后一题
最近刷题目卡在最后一题了, 题目是这样的:
问题: 设 $\left\{ a_{n}\right\} ,\left\{ b_{n}\right\} $ 为满足 $e^{a_{n+1}}=a_{n}+e^{b_{n}},n\geq1$ 的两个实数列, 已知 $a_{n}>0(n\geq1)$, 且 $\sum_{n=1}^{\infty}a_{n}$ 收敛。证明: $\sum_{n=1}^{\infty}\frac{b_{n}}{a_{n}}$ 也收敛。
从题目中容易解出来
b_{n}=\ln\left(\ue^{a_{n+1}}-a_{n}\right),所以要证明$\sum_{n=1}^{\infty}\frac{b_{n}}{a_{n}}$的收敛性, 最先想到的是证明级数的各项能被$a_{n}$的某固定常数倍控制, 于是
\frac{b_{n}}{a_{n}}=\frac{\ln\left(\ue^{a_{n+1}}-a_{n}\right)}{a_{n}}\le\frac{\ue^{a_{n+1}}-1-a_{n}}{a_{n}}\le\frac{a_{n+1}+o\left(a_{n+1}\right)-a_{n}}{a_{n}}.但右边似乎没有办法被很好的控制, 因为我最后构造了一个反例, 反例大概是这样的
a_{n}=\begin{cases}
\frac{1}{n^{2}}, & n\ne m^{2},\\
\left(1+\frac{1}{m}\right)\frac{1}{n^{2}}, & n=m^{2}+1,
\end{cases}使用$\frac{1}{n^{2}}$是因为众所周知的$\zeta(2)=\frac{\pi^{2}}{6}$, 来确保级数$\sum a_{n}$的收敛性. $1+\frac{1}{m}$项是为了能让项$\frac{a_{n+1}-a_{n}}{a_{n}}$在$n=m^{2}$时得到$\frac{1}{m}$, 这可以取遍调和级数的所有项, 从而使$\frac{a_{n+1}-a_{n}}{a_{n}}$形成的部分和含有发散子列$\frac{1}{m}$.
这是我怀疑上面的不等式在放大的过程中放的太过了, 所以有必要直接考虑$\frac{b_{n}}{a_{n}}$在$n$很大时的变化趋势, 根据 ...
Poisson公式
Poisson公式设$f(x)\in C(\RR)$, 其中$D$为单位圆盘, 则
\iint_{D}f(ax+by)dxdy=2\int_{-1}^{1}\sqrt{1-\xi^{2}}f(\xi\sqrt{a^{2}+b^{2}})d\xi.提示
做变换
\begin{cases}
\xi=\frac{ax+by}{\sqrt{a^{2}+b^{2}}},\\
\eta=\frac{bx-ay}{\sqrt{a^{2}+b^{2}}}.
\end{cases}则
\iint_{D}f(ax+by)dxdy=\iint_{D}f(\xi\sqrt{a^{2}+b^{2}})\ud\xi\ud\eta=2\int_{-1}^{1}\sqrt{1-\xi^{2}}\cdot f(\xi\sqrt{a^{2}+b^{2}})\ud\xi.
$\exp(-x^2)$ 是一个Schwartz函数
设
\frac{\ud^{n}}{\ud x^{n}}\exp\left(-x^{2}\right)=p_{n}(x)\exp\left(-x^{2}\right),则有$p_{0}(x)=1$, $p_{1}(x)=-2x$. 计算
\begin{align*}
\frac{\ud^{n+1}}{\ud x^{n+1}}\exp\left(-x^{2}\right) & =\frac{\ud}{\ud x}\frac{\ud^{n}}{\ud x^{n}}\exp\left(-x^{2}\right)\\
& =\frac{\ud}{\ud x}\left(p_{n}(x)\exp\left(-x^{2}\right)\right)\\
& =p'_{n}(x)\exp\left(-x^{2}\right)-2xp_{n}(x)\exp(-x^{2})\\
& =\left(p_{n}'(x)-2xp_{n}(x)\right)\exp(-x^{2}).
\end{align*}所以我们期望有关系
p_{n+1}(x):= p'_{n}(x)-2xp_{n}(x)成立. 容易证明对于任何$n$, $p_{n}(x)$是$x$的多项式.
考虑$\exp(x^{2})$的Maclaurin级数有
\exp(x^{2})\ge\frac{\left|x\right|^{k}}{k!}\left|x\right|^{k}\Longrightarrow\left|x\right|^{-k}k!\ge\left|x\right|^{k}\exp(-x^{2}).所以
\left|x^{k}\exp(-x^{2})\right|\le\frac{k!}{\left|x\right|^{k}}\le k!,\qquad\left|x\right|\ge1.
\left|x^{k}\exp(-x^{2})\right|\le1,\qquad\left|x\right|\le1.即对于任何$k\in\NN$, 有
\sup_{x}\left|x^{k}\exp(-x^{2})\right|\le k!
Borel集, Suslin集, Polish空间
Borel集Borel集是拓扑空间中的集合, 由开集(闭集)的可数并, 可数交和相对补运算生成. 有些书中定义Borel集由拓扑空间中的紧集来生成, 而不用开集. 这两种定义在一些空间中是等价的, 比如 Hausdorff $\sigma$紧空间, 但在一些病态空间中, 这两种定义会不同.
拓扑空间$X$中的所有Borel集形成一个$\sigma$代数, 即Borel代数, 或称Borel $\sigma$代数. $X$上的Borel代数是包含$X$中所有开集(或闭集)的最小$\sigma$代数.
在空间$X$中的所有开集(或者闭集)上都有定义的任何测度$\mu$, 在空间$X$上的Borel集上也都有定义.
定义在Borel集上的测度称为Borel测度.
Borel分层(Borel hierarchy):
描述集合论(descriptive set theory):
Suslin集Suslin集首先是由Mikhail Yakovlevich Suslin 在研究$\RR^{2}$中Borel集投影到$\RR$的时候给出的.
Suslin集的概念应用于 位势理论, 测度论和分形的研究.
定义. 在度量空间$(X,d)$中, Suslin集有形式
F=\cup_{i_{1},i_{2},\cdots,}\cap_{k=1}^{\infty}F_{i_{1},i_{2},\cdots,i_{k}},其中$F_{i_{1},i_{2},\cdots,i_{k}}$对于任何正整数有限序列$\left\{ i_{1},i_{2},\cdots,i_{k}\right\}$ 在$X$中闭.
Suslin集的性质
每个Borel集是Suslin集.
所有Suslin集形成的集族对可数交和可数并运算封闭.
并非所有的Suslin集都是Borel集, 比如在非平凡度量空间$\RR^{n}$.
若$A$是Polish空间中的一个子集, 则$A$是一个Suslin集当且仅当它是一个解析集.
在Polish空间中, 任何Suslin集都是普遍可测(universally measurable)的.
Polish空间Polish空间是一个可分的, 完备的, 可度量化的拓扑空间. 即同胚于一个有可数稠子集的完备度量空间.
Polish空间的例子有: 实直线, 任何可分Banach空间 ...
形如$\lim_{n\rightarrow\infty}\frac{1}{n}\sum_{k=1}^{n}f(k)$的极限的求法
对于如下类型的极限计算\[\lim_{n\rightarrow\infty}\frac{1}{n}\sum_{k=1}^{n}f(k)\]可采用的计算方法有:
转化为定积分定义计算若$f(k)$能表达成$g\left(\frac{k}{n}\right)$的形式时, 可采用定积分定义计算, 即\[\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^{n}g\left(\frac{k}{n}\right)=\int_{0}^{1}g(x)dx.\]
采用Stolz定理, 转化为计算 $\lim_{n\rightarrow\infty}f(n)$;使用Euler求和公式.
用重积分求解定积分
问题: 求
I=\int_{0}^{1}\frac{x-1}{\ln x}\ud x.提示
I=\int_{0}^{1}\int_{0}^{1}x^{y}\ud y\ud x=\int_{0}^{1}\int_{0}^{1}x^{y}\ud x\ud y=\int_{0}^{1}\frac{1}{y+1}\ud y=\ln(1+y)\mid_{0}^{1}=\ln2.
积分不等式
问题: 设 $f(x)$ 在 $[a,b]$ 上具有二阶可导, 且 $f(a)=f(b)=0$, $M=\max_{x\in[a,b]}\left|f^{\prime\prime}(x)\right|$, 证明
\left|\int_{a}^{b}f(x)dx\right|\leq\frac{(b-a)^{3}}{12}M.瞎算
\begin{align*}
f(x) & =f'(a)(x-a)+\frac{f''(\xi)}{2}(x-a)^{2}\\
& =f'(b)(x-b)+\frac{f''(\eta)}{2}(x-b)^{2}\\
& =\lambda f'(a)(x-a)+(1-\lambda)f'(b)(x-b)+\lambda\frac{f''(\xi)}{2}(x-a)^{2}+(1-\lambda)\frac{f''(\eta)}{2}(x-b)^{2}
\end{align*}取$\lambda=\frac{f’(b)}{f’(a)+f’(b)}$,
\int_{a}^{b}f(x)dx=\frac{\lambda}{2}\int_{a}^{b}f''(\xi)(x-a)^{2}dx+\frac{1-\lambda}{2}\int_{a}^{b}f''(\eta)(x-b)^{2}dx.
\left|\int_{a}^{b}f(x)dx\right|\le\frac{\lambda}{2}M\int_{a}^{b}(x-a)^{2}dx+\frac{1-\lambda}{2}M\int_{a}^{b}(x-b)^{2}dx=\frac{M(b-a)^{3}}{6}.
提示
\begin{align*}
0=f(a) & =f(x)+f'(x)(a-x)+\frac{f''(\xi)}{2}(a-x)^{2}\\
& =f(x)+f'(x)(b-x)+\frac{f''(\eta)}{2}(b-x)^{2}\\
& =f(x)+\lambda(a-x)f'(x)+(1-\lambda)(b-x)f'(x)+\frac{f''(\xi)}{2}\lambda(a-x)^{2}+\frac{f''(\eta)}{2}(1-\lambda)(b-x)^{2}
\end{align*}取$\lambda=\frac{ ...