lowest terms: 最低项, 最简项, 分数中没有公因子的分子和分母

A common fraction is in lowest terms if the numerator and denominator have no common factors other than $1$. A fraction in lowest terms may also be said to be in simplest form.

critical point: 临界点

定义: (càdlàg process)càdlàg process A càdlàg process $X$ is a stochastic process for which the paths $t\mapsto X_t$ are right-continuous with left limits everywhere, with probability one. The word càdlàg is an acronym from the French for “continu à droite, limites à gauche”.

定义: (extreme points)extreme points Let $X$ be a vector space over $\mathbb{R}$, $K$ be a convex subset of $X$. We say that $a$ is an extrem point of $K$ iff, whenever $a=tx+(1-t)y$ for $t\in (0,1)$, we have $x=y=a$.

定义: (scatter plot) a graph in which the values of two variables are plotted along two axes, the pattern of the resulting points revealing any correlation present.

定义: (Hessian Matrix)Hessian Matrix The Hessian matrix of a multivariable function $f(x,y,z,\cdots)$ organizes all second partial derivatives into a matrix:
\[
\mathbf{H} f=\left[\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial x \partial y} & \frac{\partial^{2} f}{\partial x \partial z} & \cdots \\
\frac{\partial^{2} f}{\partial y \partial x} & \frac{\partial^{2} f}{\partial y^{2}} & \frac{\partial^{2} f}{\partial y \partial z} & \cdots \\
\frac{\partial^{2} f}{\partial z \partial x} & \frac{\partial^{2} f}{\partial z \partial y} & \frac{\partial^{2} f}{\partial z^{2}} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]
\]
other notations are $\mathbf{H}(f)$, $\mathbf{H}f$ or $\mathbf{H}_f$

定义: (simple group)simple group A group $G$ is simple iff it has only $G$ and the trivial group as normal subgroups.

extreme points. https://proofwiki.org/wiki/Definition:Extreme_Point_of_Convex_Set
Hessian Matrix. https://www.khanacademy.org/math/multivariable-calculus/applications-of-multivariable-derivatives/quadratic-approximations/a/the-hessian
simple group. https://proofwiki.org/wiki/Definition:Simple_Group