笛卡尔叶形线MSE4435438

1
2
3
4
5
6
7
8
9
ContourPlot[x^3 + y^3 == 3 x*y, {x, -2, 2}, {y, -2, 2},
Frame -> False(*去除边框*),
Axes -> True,
Ticks -> {{2^(2/3)}, {}}(*仅添加横坐标的一个刻度*),
ContourStyle -> {Thickness[0.007], Dashed, Black}(*等高线样式*),
Epilog -> {{Red, Line[{{{-2, 1}, {2, -3}}, {{-2, -2}, {3/2, 3/2}}}]},
{Thickness[0.005], Line[{{2^(2/3), 2^(1/3)}, {2^(2/3), 0}}]},
PointSize[Large], Point[{3/2, 3/2}],
Text["(3/2,3/2)", {3/2, 3/2}, {-1.4, -0.5}]}]

未命名-1-16510420766021

1
2
3
4
5
6
7
8
9
10
Module[{pt1 = {3/2, 3/2}, pt2 = {2^(2/3), 2^(1/3)}, 
pt3 = {2^(2/3), 0}},
PolarPlot[
3 Sin[t] Cos[t]/(Sin[t]^3 + Cos[t]^3), {t, -\[Pi]/4, 7 \[Pi]/4},
PlotRange -> {{-2, 2}, {-2, 5/3}},
PlotStyle -> {Thickness[1/120], Black}, Axes -> True, Ticks -> None,
AxesStyle -> Directive[Thickness[1/300]],
Epilog -> {PointSize[1/50], Thickness[1/200], Point[pt1],
Line[{{pt2, pt3}, {pt1, {-1, -1}}, {{-3, 2}, {2, -3}}}]},
ImageSize -> 512]]

未命名-1

MSE4435438. https://math.stackexchange.com/questions/4435438

MSE2682544

曲线$\left(\frac{x}{a}\right)^{2/3}+\left(\frac{y}{b}\right)^{2/3}=1$上每个点处的切线与坐标轴的截距分别为$h,k$, 则$h,k$满足方程

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
Manipulate[
Block[{a = 1, b = 2},
h = (a Cos[t0] b Sin[t0]^3 + b a Cos[t0]^3 Sin[t0])/(b Sin[t0]);
k = -((2/(3 a Cos[t0]))/(2/(3 b Sin[t0]))) (-a Cos[t0]^3) +
b Sin[t0]^3;
Show[
{RegionPlot[(x/a)^(2/3) + (y/b)^(2/3) < 1, {x, 0, a}, {y, 0, b}],
ParametricPlot[{(a Cos[t] b Sin[t]^3 + b a Cos[t]^3 Sin[t])/(
b Sin[t]), -((2/(3 a Cos[t]))/(2/(3 b Sin[t]))) (-a Cos[t]^3) +
b Sin[t]^3}, {t, 0, Pi}],
Plot[{-((2/(3 a Cos[t0]))/(2/(3 b Sin[t0]))) (x - a Cos[t0]^3) +
b Sin[t0]^3}, {x, 0, (
a Cos[t0] b Sin[t0]^3 + b a Cos[t0]^3 Sin[t0])/(b Sin[t0])},
PlotStyle -> Red],
Graphics[{Dotted, Blue, Line[{{0, k}, {h, k}, {h, 0}}],
Line[{{h, k}, {a Cos[t0]^3, b Sin[t0]^3}}], PointSize[0.02],
Point[{{0, k}, {h, 0}, {h, k}, {a Cos[t0]^3, b Sin[t0]^3}}]}]
}
]
], {t0, 0.3, Pi/2 - 0.3}
]

图像类似这样

image-20220824122941018